
A 3D Distributed Index(*)

Gabriel H. Tolosa1,2

The size of available text collections grows at very high rates. At the same time, there is a fast increment in the number of users who use information retrieval systems
to find documents in that collections. Furthermore, it becomes even important to provide fast response to the users. To handle huge data volumes and high query
throughput rates (for example, in a Web Search Engine), it is necesary to use parallel systems in which the data is split across a set of processors.

Inverted files are the most widely used data structure to implement efficient search systems that can deal with a high traffic of queries upon web-scale text collections. In
its simplest form, an inverted index consists of a vocabulary table which contains the set of relevant terms found in the text collection, and a set of posting lists that
contain the document identifiers. One interesting issue is the distribution of the whole inverted file onto P processors. There exist two basic approaches: document
partition (local index) and term partition (global index) but some mixed approaches have been developed for special cases. This work focuses in this research problem
and we propose a novel distributed index architecture.

Example: Assume a collection with twelve
documents and a parallel system with four
processors.

Each processing node stores the index corresponding to
a subset of the documents and every node participates
in the resolution of a query.

 Document-partitioned index
Each processing node maintains complete index
information for a subset of the terms in the collection,
and each query is referred to the subset of the nodes
that hold relevant information.

 Term-partitioned index

2D Distributed Index
Many different methods for distributing
the inverted file onto P processors or
computers and their respective query
processing strategies have been
proposed in the literature, focusing on
optimizing for particular situations. In
previous work, Feuerstein et al.
introduced a novel distributed
architecture for indexing, named the 2D
index, that consists in arranging a set of

The work presented here is an
evolution of the 2D index in which
we include also replication which is a
common strategy to achieve fault
tolerance and increase query
throughput. We extend the RxC
model adding D processors which
act as replicas, building a 3D index.
In this architecture, every processor
is responsible of a set of queries but
the index partitioning is replicated D
times.

3D Distributed Index

Evaluation and Preliminar Results

3D Index Performace

We tested several configurations of Rows,
Columns and Replicas (RxCxD) with P=[32..2048]
and found a trade-off value for each case.

Escalability

To study the behaviour of the 3D Index as the
collection size varies we started with the original
data (base collection) and scaled it up/down. To
perform this modification, we re-compute the sizes
of the postings lists and made necessary
adjustments to obtain the sizes of intersections for
50%, 200% y 1000% of the base collection (N=0.5,
2 and 10 respectivelly).

We run simulations for P = 512, 1024 and 2048.
For each value of P we found a logaritmic curve
(with coefficients of 0.29, 0.15 and 0.06,
respectively) that models the increment of the total
cost while N grows (Figure 3).

References
[1] E. Feuerstein, M. Marín, M. Mizrahi, V. G. Costa, and R. A. Baeza-Yates. Two-dimensional distributed inverted files. SPIRE 2009, vol 5721, Lecture Notes in CS, pp 206-213. Springer, 2009.
[2] Q. Gan and T. Suel. Improved techniques for result caching in web search engines. In Proc.of the 18th international conference on World wide web, WWW ’09, pages 431-440, 2009. ACM.
[3] X. Long and T. Suel. Three-level caching for efficient query processing in large web search engines. In Proceedings of the 14th international conference on World Wide Web, WWW ’05, 2005. ACM.
[4] A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architecture for distributed text query evaluation. Information Retrieval, 10:205-231, 2007.

Results of "2D" strategy showed that it is possible to obtain significant improvements in the performance with the same number of processors but choosing an adequate
number of rows (R) and columns (C). The best configuration achieves an optimal trade-off between communication cost and computation overhead, minimizing the total
processing cost for a set of queries. We assume a similar behaviour in the 3D index but in this new case the optimal configuration relies on three parameters (R, C and D).

processors in a two-dimensional array, applying term-partitioning at row level and
document-partitioning at column level.

Pipelined Caching

We propose a novel idea for managing an
"intersection cache” (where each one keeps
frequently needed intersections of posting lists).
This schema is applied to the set of processors
that form a “column” slice of our 3D matrix (Figure
4). All processors in the slice will share their
intersection cache.

Though we are conducting exhaustive tests,
preliminar results showed important improvements
in the performance, exchanging some extra
communication cost for much less computation
and disk accesses.

Figure 1 shows
the configurations
with the best
performance for
each value of P as
a function of the
number of
columns (x-axis).

Besides, we found
that cost
reduction when P
increases can be
approximated with
f(x) = 23 P-0.84

(Figure 2)

Figure 1

Figure 2

Figure 3

For example, for a four-
term query t1∩t2∩t3∩
t4 the column-broker in
each column looks for
the intersection t1∩t2∩
t3∩t4 in a particular

processor of the column. If that fails, in a second step, it
looks for t1∩t2∩t3 on the corresponding processor and so
on. When a hit is found the partial result of the intersection
is retrieved, and a schedule is prepared to complete the
missing intersections.

Figure 4

1Departamento de Computacion, FCEyN, Universidad de Buenos Aires
(estudiante del Doctorado en Cs. de la Computación, director: Dr. Esteban Feuerstein)

2Departamento de Cs Básicas, Universidad Nacional de Lujan
(*) En colaboración con Yahoo! Research Santiago de Chile

