Resource Usage Contracts for .NET

Jonathan Tapicer, Diego Garbervetsky and Martin Rouaux - {jtapicer, diegog, mrouaux}@dc.uba.ar
Departamento de Computacion, FCEyN, Universidad de Buenos Aires, Argentina

How?

¢ An extension of Code Contracts to support resource usage specifications in .NET
programs.

e Tailored for specifying dynamic memory consumption, a resource that is not only
allocated but it is also reclaimed during program execution.

e We introduce new set of annotations enabling specification of both
memory consumption and lifetime properties in a modular fashion.

e These annotations allow us to compute an upper bound of the real
memory allocated using a compositional analysis.

ample.cs A

2 IntLinkedList
~lclass IntLinkedList {
private Node Head:;

= public void PushFront (Node node) { is temporary

Contract.Memory.Tmp<Logger>(1l)
Contract.Memory.DestTmp () :

Logger logger = new Logger():
node.Next = this.Head;
this.Head = node;

logger.Log ("PushFront done"):;

Contract.Memory.Tmp<T> (n) ;
defines a temporary memory of
type T of at most n

= public void Fill (int n) {
Contract.Requires(n > 0);
Contract.Memory.Rsd<Node>(Contract.Memory.This, n - 1);
Contract.Memory.Tmp<Logger>(1l)
for (int 1 = 1; 1 <= n; 1++) {

Contract.Memory.DestRsd (Contract.Memory.This)

Node node = new Node (i) '\

this.PushFront (node) ;

t .Memory.De

| and tagged as

= public void Clear() {

this.Head = null;
Contract.Memory.Rsd<Logger>(Contract.Memory.This,
Contract.Memory.DestRsd (Contract.Memory.This);
Logger logger = new Logger():

logger.Log("Clear done"):;

1):

1
0% - 4|

J 0Errors | I\ 2 Warnings | i) 1 Message

Contract.Memory.Rsd<T>(t,
defines a residual memory of type T

n);

]J Description - I File | Line | Column I Project tagged as t of at most n
2 CodeContracts: Checked 4 assertions: 3 correct 1 false example.mod.dll 1 1 example
1 CodeContracts: ensures is false Example.cs 23 5 example
3 CodeContracts: The object created doesn't escape from the method. Example.cs 28 9 example

How are the annotations checked?

Memory verifier

e Automatic inference of quantitative and
lifetime annotations in order to mitigate
annotation burden.

e Upgrade the language in order to enable finer
grained lifetime specs. while maintaining
information hiding.

e Use SMT solvers (e.g Z3) and integrate them
with tools capable of dealing with non-linear
expressions.

assembly

verification
results

The code is instrumented by inserting
counters and standard Code Contracts
assertions in terms of those counters.
Lifetime annotations correctness is
verified using the point-to analysis.

instrumented
assembly

—J

http://lafhis.dc.uba.ar/resourcecontracts/
http://lafhis.dc.uba.ar/resourcecontracts/

