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Algorithms under uncertainty 

•  NP-hardness is not the only hurdle 
we face in day-to-day algorithm design 

•  Lack of information is another… 

•  Knowing the future… 
•  Many real life situations we have to  make 

decisions “on-line” without having full 
knowledge of the future 



On-line Algorithms 

Work without full knowledge 
of the future 

•  Deal with a sequence of 
events, one event at a 
time  

•  Future events are unknown 
to the algorithm 

•  The next event happens 
only after the algorithm is 
done dealing with the 
previous event

Problem 1: secretary problem 
Secretary problem (also online dating game) 
•  You must hire  a secretary; you interview one 

person a day 
•  There are n candidates that arrive in random order 
•  On the day of interview you must immediately 

decide whether hiring  or not  
•  You cannot go back in time (i.e. you cannot hire a 

person you said “no” the day before) 
•  What strategy would you use to increase your 

chance of choosing the best candidate? 
 assume we can associate to each candid. a positive 

value; we want to hire the candid. with max v  



Secretary problem: algorithm 
Algorithm: Observe first n/e candidates.  Let v=max. 
Pick the next candid. whose value is > v or take last 

Theorem:  Pr (picking max candidate of S) > 1/e (n large). 
Proof: Select best candid. if i’th best candid.  is best in first 
1/e candid. and best one is first among best (i-1) candid. 

Happens with prob. = (t/n) !t!i<n (1/i) " (t/n) ln(n/t) " 1/e 

Threshold time t = n/e time t = n 

i’th best best 
2nd best through (i-1)st best 

Problem 2: ski rental 

The skier’s dilemma: to buy or to rent  
•  If you own the equipment, you take it with 

you, otherwise you rent 
•  r $ to rent, M $ to buy 
•  Number of trips is unknown: depends on 

enjoyment, injuries, weather etc. 

•  Goal: minimize number of $ spent  



Problem 2: Off-line algorithm 

If you know you will sky k times (you know 
the future) then the algorithm is obvious: 

•  If M < kr then buy the first day;  
•  Otherwise rent 

•  But k is unknown!! 

OPT = min (rk,M) 

Problem 2: On-line algorithm 

Rule of the thumb:  
Rent for  floor(M/r) days (until total spent 

would exceed cost of buying), then buy 
Analysis 

– kr < M : CostALG(#)  = CostOPT(#)  
– kr >= M : CostALG(#) ! 2M 
               CostOPT(#) = M 
– You never spend more than the double 

of the optimal solution 



Competitive Analysis:  
•  Compare the cost of an on-line algorithm 

with an optimal prescient algorithm on any 
sequence of requests. Namely off-line 
algorithm knows  
– the exact properties of all the events in 

the sequence) 
– the on-line algorithm 

•  The competitive ratio is the ratio between 
what the on-line algorithms “pays” to what 
the optimal off-line algorithm “pays” 

•  Formally:  let               be the cost of the 
on-line algorithm on sequence      . Let             
be the optimal off-line cost on     then the 
competitive ratio is: 

    

•  Calculus:  supremum is similar to maximum 
but may be achieved in the limit 



Problem 3: Scheduling Jobs 
Input: A set of n jobs, each job j has processing  
time pj; A set of m identical machines 
Goal: find a schedule that minimizes maximum  
completion time (makespan) 
NP-complete (even for 2 machines)  

The jobs are not given up-front 
they arrive one by one (in adversarial order) 
you have to schedule each job before seeing 
 the next one. 
A good algorithm: Graham’s Greedy Algorithm! 

Graham’s Greedy Algorithm 
- Order the jobs j1, j2, …, jn in some order 

Assign jt to the least loaded machine so far 

- Initially all the machines are empty 
- For t = 1 to n 

Note, this “online” algorithm performs within a 
factor of (2-1/m) of the best you could do “offline” 

Moreover, you did not even need to know the  
processing times of the jobs when they arrived. 



Problem 4: Caching 

•  K-competitive caching. 
•  Two level memory model 
•  If a page is not in the cache, a page fault 

occurs. 
•  A Paging algorithm specifies which page to 

evict on a fault.  
•  Paging algorithms are online algorithms for 

cache replacement. 



Online Paging Algorithms 

•  Assumption: cache can hold k-pages. 
•  CPU accesses memory thru cache. 
•  Each request specifies a page in the 

memory system. 
– We want to minimize the page faults. 

A Lower bound 

•  Theorem:  Let A be a deterministic online 
paging algorithm. If A is "-competitive, 
then " # k.  

•  Proof:  Let S ={p_1,p_2, … , p_k+1} be a set 
of k+1 arbitrary memory pages.  Assume 
w.l.o.g. that A and OPT initially have p_1, 
… , p_k in their cache. 

    In the worst case A has a page fault on 
any request $t. 



LRU: Competitive Analysis 

Theorem.  LRU is k-competitive. 
Proof:  Let % be a subsequence of $ on which LRU faults 

exactly k times.  Let p denote page requested just 
before %. 

•  Case 1:  LRU faults in sequence % on p. 
–  % requests at least k+1 different pages  & 

OPT faults at least once 
•  Case 2:  LRU faults on a page, say q, at least twice in %. 

–  % requests at least k+1 different pages  & 
OPT faults at least once 

LRU : Least recently used  
Evicts page whose most recent access was earliest 

Theorem.  LRU is k-competitive. 
Proof:  Let % be a subsequence of $ on which LRU 

faults exactly k times.  Let p denote page requested 
just before %. 

•  Case 3:  LRU does not fault on p, nor on any page 
more than once. 

• k different pages are accessed and faulted on, 
none of which is p 

• p is in OPT's cache at start of %  & MIN 
faults at least once 

$0 $1 $2 . . . $1 $p .  .  . $: 

LRU faults k times 

MIN faults # 1 times 

LRU faults 
' k times 



Problem 5: 
Monkey Looking for food 

Also known as the problem of “where is the 
toilet in the corridor?” 

Unknown 

What is the best competitive algorithm  
you can come up with?  
What is its competitive ratio? 

Problem 5: 
Algorithm: choose one direction (say left); i=1 
While not found do  
 Round 2i-1: walk left for distance 2^i; return home 
 Round 2i: walk right direction for 2^i; return home 
 i=i +1  Unknown 



Problem 5: 
Algorithm: choose one direction (say left); i=1 
While not found do  
 Round 2i-1: walk left for distance 2^i; return home 
 Round 2i: walk right direction for 2^i; return home 
 i=i +1  Unknown 

Problem 5: 
Algorithm: choose one direction (say left); i=1 
While not found do  
 Round 2i-1: walk left for distance 2^i; return home 
 Round 2i: walk right direction for 2^i; return home 
 i=i +1 

Algorithm is 13 competitive 

Better algorithms 
-  Randomised algorithm: choose the initial direction 

randomly 
-  Change the function gives the distance walked at 

each round    



Problem 5: (3Dim.)  

•  Monkey looking for food. 

Unknown 

Questions? 


