
ECI- 2011

Algorithms under uncertainty

•  NP-hardness is not the only hurdle
we face in day-to-day algorithm design

•  Lack of information is another…

•  Knowing the future…
•  Many real life situations we have to make

decisions “on-line” without having full
knowledge of the future

On-line Algorithms

Work without full knowledge
of the future

•  Deal with a sequence of
events, one event at a
time

•  Future events are unknown
to the algorithm

•  The next event happens
only after the algorithm is
done dealing with the
previous event

Problem 1: secretary problem
Secretary problem (also online dating game)
•  You must hire a secretary; you interview one

person a day
•  There are n candidates that arrive in random order
•  On the day of interview you must immediately

decide whether hiring or not
•  You cannot go back in time (i.e. you cannot hire a

person you said “no” the day before)
•  What strategy would you use to increase your

chance of choosing the best candidate?
 assume we can associate to each candid. a positive

value; we want to hire the candid. with max v

Secretary problem: algorithm
Algorithm: Observe first n/e candidates. Let v=max.
Pick the next candid. whose value is > v or take last

Theorem: Pr (picking max candidate of S) > 1/e (n large).
Proof: Select best candid. if i’th best candid. is best in first
1/e candid. and best one is first among best (i-1) candid.

Happens with prob. = (t/n) !t!i<n (1/i) " (t/n) ln(n/t) " 1/e

Threshold time t = n/e time t = n

i’th best best
2nd best through (i-1)st best

Problem 2: ski rental

The skier’s dilemma: to buy or to rent
•  If you own the equipment, you take it with

you, otherwise you rent
•  r $ to rent, M $ to buy
•  Number of trips is unknown: depends on

enjoyment, injuries, weather etc.

•  Goal: minimize number of $ spent

Problem 2: Off-line algorithm

If you know you will sky k times (you know
the future) then the algorithm is obvious:

•  If M < kr then buy the first day;
•  Otherwise rent

•  But k is unknown!!

OPT = min (rk,M)

Problem 2: On-line algorithm

Rule of the thumb:
Rent for floor(M/r) days (until total spent

would exceed cost of buying), then buy
Analysis

– kr < M : CostALG(#) = CostOPT(#)
– kr >= M : CostALG(#) ! 2M
 CostOPT(#) = M
– You never spend more than the double

of the optimal solution

Competitive Analysis:
•  Compare the cost of an on-line algorithm

with an optimal prescient algorithm on any
sequence of requests. Namely off-line
algorithm knows
– the exact properties of all the events in

the sequence)
– the on-line algorithm

•  The competitive ratio is the ratio between
what the on-line algorithms “pays” to what
the optimal off-line algorithm “pays”

•  Formally: let be the cost of the
on-line algorithm on sequence . Let
be the optimal off-line cost on then the
competitive ratio is:

•  Calculus: supremum is similar to maximum
but may be achieved in the limit

Problem 3: Scheduling Jobs
Input: A set of n jobs, each job j has processing
time pj; A set of m identical machines
Goal: find a schedule that minimizes maximum
completion time (makespan)
NP-complete (even for 2 machines)

The jobs are not given up-front
they arrive one by one (in adversarial order)
you have to schedule each job before seeing
 the next one.
A good algorithm: Graham’s Greedy Algorithm!

Graham’s Greedy Algorithm
- Order the jobs j1, j2, …, jn in some order

Assign jt to the least loaded machine so far

- Initially all the machines are empty
- For t = 1 to n

Note, this “online” algorithm performs within a
factor of (2-1/m) of the best you could do “offline”

Moreover, you did not even need to know the
processing times of the jobs when they arrived.

Problem 4: Caching

•  K-competitive caching.
•  Two level memory model
•  If a page is not in the cache, a page fault

occurs.
•  A Paging algorithm specifies which page to

evict on a fault.
•  Paging algorithms are online algorithms for

cache replacement.

Online Paging Algorithms

•  Assumption: cache can hold k-pages.
•  CPU accesses memory thru cache.
•  Each request specifies a page in the

memory system.
– We want to minimize the page faults.

A Lower bound

•  Theorem: Let A be a deterministic online
paging algorithm. If A is "-competitive,
then " # k.

•  Proof: Let S ={p_1,p_2, … , p_k+1} be a set
of k+1 arbitrary memory pages. Assume
w.l.o.g. that A and OPT initially have p_1,
… , p_k in their cache.

 In the worst case A has a page fault on
any request $t.

LRU: Competitive Analysis

Theorem. LRU is k-competitive.
Proof: Let % be a subsequence of $ on which LRU faults

exactly k times. Let p denote page requested just
before %.

•  Case 1: LRU faults in sequence % on p.
–  % requests at least k+1 different pages &

OPT faults at least once
•  Case 2: LRU faults on a page, say q, at least twice in %.

–  % requests at least k+1 different pages &
OPT faults at least once

LRU : Least recently used
Evicts page whose most recent access was earliest

Theorem. LRU is k-competitive.
Proof: Let % be a subsequence of $ on which LRU

faults exactly k times. Let p denote page requested
just before %.

•  Case 3: LRU does not fault on p, nor on any page
more than once.

• k different pages are accessed and faulted on,
none of which is p

• p is in OPT's cache at start of % & MIN
faults at least once

$0 $1 $2 . . . $1 $p . . . $:

LRU faults k times

MIN faults # 1 times

LRU faults
' k times

Problem 5:
Monkey Looking for food

Also known as the problem of “where is the
toilet in the corridor?”

Unknown

What is the best competitive algorithm
you can come up with?
What is its competitive ratio?

Problem 5:
Algorithm: choose one direction (say left); i=1
While not found do
 Round 2i-1: walk left for distance 2^i; return home
 Round 2i: walk right direction for 2^i; return home
 i=i +1 Unknown

Problem 5:
Algorithm: choose one direction (say left); i=1
While not found do
 Round 2i-1: walk left for distance 2^i; return home
 Round 2i: walk right direction for 2^i; return home
 i=i +1 Unknown

Problem 5:
Algorithm: choose one direction (say left); i=1
While not found do
 Round 2i-1: walk left for distance 2^i; return home
 Round 2i: walk right direction for 2^i; return home
 i=i +1

Algorithm is 13 competitive

Better algorithms
-  Randomised algorithm: choose the initial direction

randomly
-  Change the function gives the distance walked at

each round

Problem 5: (3Dim.)

•  Monkey looking for food.

Unknown

Questions?

