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Scheduling

Given a set of jobs and a set of machines.

Each job has a processing time.

Each job has to be processed by one of the machines

Each machine can process at most one job at a time

A schedule is an assignment of the jobs to the machine together
with an order of the jobs on the machines

Given a schedule the time at which a job completes is called its
completion time

Objectives are functions of the completion times of jobs like
maximum completion time or average completion times

There may be deadlines, release times, precedence constraints
etc.
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Scheduling

Given a set J of n jobs to be scheduled on 1 machine

job j has processing time pj and weight wj

Objective: Minimize the weighted sum of completion times
1 ||

∑
wjCj
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Robust Scheduling

General scheduling policies assume machines are always available or
unavailability periods are known
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Robust Scheduling

General scheduling policies assume machines are always available or
unavailability periods are known

What about scheduling policies able to cope with unexpected
machines breakdown or slowdown?
The scheduler has usually no control over disruptions and does not know beforehand
when they occur
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Robust Scheduling

General scheduling policies assume machines are always available or
unavailability periods are known

What about scheduling policies able to cope with unexpected
machines breakdown or slowdown?
The scheduler has usually no control over disruptions and does not know beforehand
when they occur

We are interested in scheduling policies that are robust with respect to
machine break- and slow-down
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Measure of Robustness

The quality of the robust algorithm is measured by the worst-case ratio
with the schedule of an optimal algorithm having full knowledge of the
machines availability
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Measure of Robustness

The quality of the robust algorithm is measured by the worst-case ratio
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Measure of Robustness

The quality of the robust algorithm is measured by the worst-case ratio
with the schedule of an optimal algorithm having full knowledge of the
machines availability

The algorithm decides on the scheduling policy before the execution
starts

During execution the algorithm does not change the scheduling policy
Different from on-line algorithm

A robust algorithm fixes the sequence of the jobs
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Measure of Robustness

The quality of the robust algorithm is measured by the worst-case ratio
with the schedule of an optimal algorithm having full knowledge of the
machines availability

The algorithm decides on the scheduling policy before the execution
starts

During execution the algorithm does not change the scheduling policy
Different from on-line algorithm

A robust algorithm fixes the sequence of the jobs

Also called in the literature universal scheduling
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Alternative uncertainty models

Extremes: Off-line ↔ Robust

Uncertainty: which of a given set of scenarios may occur
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Alternative uncertainty models

Extremes: Off-line ↔ Robust

Uncertainty: which of a given set of scenarios may occur

Adaptive Nonadaptive

Deterministic On-line/Off-line Robust scheduling

Stochastic 2-stage optimization 2-stage optimization

with just 2nd stage decision made in stage 1

(probabilistic analysis) (a priori scheduling)
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The problem 1 ||
∑

wjCj

Given a set J of n jobs to be scheduled on 1 machine

job j has processing time pj and weight wj

Objective: Minimize the weighted sum of completion times
1 ||

∑
wjCj
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The problem 1 ||
∑

wjCj

Given a set J of n jobs to be scheduled on 1 machine

job j has processing time pj and weight wj

Objective: Minimize the weighted sum of completion times
1 ||

∑
wjCj

Machine slows down or becomes (temporary) unavailable

Preemption is allowed
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The problem 1 ||
∑

wjCj

Given a set J of n jobs to be scheduled on 1 machine

job j has processing time pj and weight wj

Objective: Minimize the weighted sum of completion times
1 ||

∑
wjCj

Machine slows down or becomes (temporary) unavailable

Preemption is allowed
Specifically, the job being processed at the moment of a machine
break down can be resumed without loss of processing as soon
as the machine becomes available again
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The problem 1 ||
∑

wjCj

Complexity of the non-robust version

No disruption: simple polynomial time optimal algorithm:
schedule jobs according to increasing ratio pj/wj
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The problem 1 ||
∑

wjCj

Complexity of the non-robust version

No disruption: simple polynomial time optimal algorithm:
schedule jobs according to increasing ratio pj/wj

weakly NP-complete with 1 unavailable interval (KNAPSACK)
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The problem 1 ||
∑

wjCj

Complexity of the non-robust version

No disruption: simple polynomial time optimal algorithm:
schedule jobs according to increasing ratio pj/wj

weakly NP-complete with 1 unavailable interval

strongly NP-complete 2 or more unavailable periods

in P if all wj = 1
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The problem 1 ||
∑

wjCj

Complexity of the non-robust version

No disruption: simple polynomial time optimal algorithm:
schedule jobs according to increasing ratio pj/wj

weakly NP-complete with 1 unavailable interval

strongly NP-complete 2 or more unavailable periods

in P if all wj = 1

Without preemption two or more unavailbility periods is hard even
if all wj = 1
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No robust schedule is always optimal

2 jobs: job 1 has p1 = 2, w1 = 3; job 2 has p2 = 1, w2 = 1
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No robust schedule is always optimal

2 jobs: job 1 has p1 = 2, w1 = 3; job 2 has p2 = 1, w2 = 1

No disruption: optimum schedule is first 1 then 2

Schedule 1,2 has cost 6 + 3 = 9

Schedule 2,1 has cost 1 + 9 = 10
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No robust schedule is always optimal

2 jobs: job 1 has p1 = 2, w1 = 3; job 2 has p2 = 1, w2 = 1

No disruption: optimum schedule is first 1 then 2

Schedule 1,2 has cost 6 + 3 = 9

Schedule 2,1 has cost 1 + 9 = 10

If machine is not available between time 1 and time 10 then

Schedule 1,2 has cost 3 · 11 + 1 · 12 = 45

Schedule 2,1 has cost 1 · 1 + 3 · 12 = 37
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No robust schedule is always optimal

2 jobs: job 1 has p1 = 2, w1 = 3; job 2 has p2 = 1, w2 = 1

No disruption: optimum schedule is first 1 then 2

Schedule 1,2 has cost 6 + 3 = 9

Schedule 2,1 has cost 1 + 9 = 10

If machine is not available between time 1 and time 10 then

Schedule 1,2 has cost 3 · 11 + 1 · 12 = 45

Schedule 2,1 has cost 1 · 1 + 3 · 12 = 37

If machine is not available between time 1 and 2 then optimal
schedule is again first 1 and then 2
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Price of Robustness

PRICE OF ROBUSTNESS: The worst-case ratio that any robust algorithm
has to incur with respect to a clairvoyant optimum
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No robust schedule is always optimal

2 jobs: job 1 has p1 = 2, w1 = 3; job 2 has p2 = 1, w2 = 1

No disruption: optimum schedule is first 1 then 2

Schedule 1,2 has cost 6+ 3= 9

Schedule 2,1 has cost 1 + 9=10

If machine is not available between time 1 and time 10 then

Schedule 1,2 has cost 33+12=45

Schedule 2,1 has cost 1+ 36= 37

If machine is not available between time 1 and 2 then optimal
schedule is again first 1 and then 2

Price of Robustness is 10/9
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Machine capacity function

The machine capacity function f(t) is the aggregated amount of
processing time available up to time t

Robustness against any machine capacity function
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Results

A deterministic polynomial time algorithm that provides a
sequence that for any ǫ > 0 and any machine capacity function is
at most 4 + ǫ times the optimum

e-approximate randomized algorithm

lower bound of 4 for deterministic algorithms

lower bound of e for randomized algorithms

Extension to (restricted) precedence constraints

FPTAS for 1 unavailability problem (non-robust)
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Deterministic 4 + ǫ

Assume maximum speed 1. Let π be job-order and S(π) a resulting
schedule

C
S(π)
j = min{t | f(t) ≥ Cπ

j } completion time of job j

WS(π)(t) total weight of jobs not completed by time t
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Deterministic 4 + ǫ

Assume maximum speed 1. Let π be job-order and S(π) a resulting
schedule

C
S(π)
j = min{t | f(t) ≥ Cπ

j } completion time of job j

WS(π)(t) total weight of jobs not completed by time t

If there are no breaks (speed-1 for all t) then

∑
j∈J

wjC
S(π)
j =

∑
j∈J

wjC
π
j =

∫
∞

0

W π(t)dt
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Deterministic 4 + ǫ

Assume maximum speed 1. Let π be job-order and S(π) a resulting
schedule

C
S(π)
j = min{t | f(t) ≥ Cπ

j } completion time of job j

WS(π)(t) total weight of jobs not completed by time t

If there are no breaks (speed-1 for all t) then

∑
j∈J

wjC
S(π)
j =

∑
j∈J

wjC
π
j =

∫
∞

0

W π(t)dt

With f(t) the machine capacity function

∑
j∈J

wjC
S(π)
j =

∫
∞

0

WS(π)(t)dt =

∫
∞

0

W π(f(t))dt

ECI 2011, Buenos Aires - Universal Scheduling – p. 14/31



Deterministic 4 + ǫ

Given a time instant t let W ∗(t) = minπ W π(t)
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∫
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Deterministic 4 + ǫ

Given a time instant t let W ∗(t) = minπ W π(t)

For any f , a lower bound on the objective value of any schedule is

∫
∞

0

W ∗(f(t))

KEY LEMMA. A sequence π of jobs yields a schedule with objective
value at most c times the optimum value for all machine capacity
functions f if and only if for all t

W π(t) ≤ cW ∗(t)
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Deterministic 4 + ǫ

KEY LEMMA. A sequence π of jobs yields a schedule with objective value at most c times
the optimum value for all machine capacity functions f if and only if for all t

Wπ(t) ≤ cW ∗(t)
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Deterministic 4 + ǫ

KEY LEMMA. A sequence π of jobs yields a schedule with objective value at most c times
the optimum value for all machine capacity functions f if and only if for all t

Wπ(t) ≤ cW ∗(t)

“if” is clear, since

∑

j∈J

wjC
S(π)
j =

∫ ∞

0
Wπ(f(t))dt ≤ c

∫ ∞

0
W ∗(f(t))dt
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Deterministic 4 + ǫ

KEY LEMMA. A sequence π of jobs yields a schedule with objective value at most c times
the optimum value for all machine capacity functions f if and only if for all t

Wπ(t) ≤ cW ∗(t)

“only if” by contradiction. Suppose Wπ(t0) > cW ∗(t0) for some t0.
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Deterministic 4 + ǫ

KEY LEMMA. A sequence π of jobs yields a schedule with objective value at most c times
the optimum value for all machine capacity functions f if and only if for all t

Wπ(t) ≤ cW ∗(t)

“only if” by contradiction. Suppose Wπ(t0) > cW ∗(t0) for some t0.

f(t) =















t if t ≤ t0

t0 if t0 < t ≤ t1

t− (t1 − t0) if t > t1

breakdown in [t0, t1]
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Deterministic 4 + ǫ

f(t) =















t if t ≤ t0

t0 if t0 < t ≤ t1

t− (t1 − t0) if t > t1

breakdown in [t0, t1]

∑

j∈J

wjC
S(π)
j =

∑

j∈J

wjC
π
j + (t1 − t0)W

π(t0)
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Deterministic 4 + ǫ

f(t) =















t if t ≤ t0

t0 if t0 < t ≤ t1

t− (t1 − t0) if t > t1

breakdown in [t0, t1]

∑

j∈J

wjC
S(π)
j =

∑

j∈J

wjC
π
j + (t1 − t0)W

π(t0)

For π∗ with Wπ∗

(t0) = W ∗(t0)

∑

j∈J

wjC
S(π∗)
j =

∑

j∈J

wjC
π∗

j + (t1 − t0)W
∗(t0)
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Deterministic 4 + ǫ

f(t) =















t if t ≤ t0

t0 if t0 < t ≤ t1

t− (t1 − t0) if t > t1

breakdown in [t0, t1]

∑

j∈J

wjC
S(π)
j =

∑

j∈J

wjC
π
j + (t1 − t0)W

π(t0)

For π∗ with Wπ∗

(t0) = W ∗(t0)

∑

j∈J

wjC
S(π∗)
j =

∑

j∈J

wjC
π∗

j + (t1 − t0)W
∗(t0)

Since by assumption Wπ(t0)/W ∗(t0) > c making t1 → ∞ causes
∑

j∈J wjC
S(π)
j /

∑

j∈J wjC
S(π∗)
j > c. Contradiction
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Deterministic 4 + ǫ

Given our Key Lemma, we can use a result of Bechetti, Leonardi,
Marchetti Spaccamela and Pruhs, 2003 who design an algorithm for
which they prove W π(t) ≤ 24W ∗(t) for all t showing that a constant
ratio (price of robustness) exists.

We will design an algorithm with c = 4
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Deterministic 4 + ǫ

Idea: put jobs with small w and large p later
Algorithm A.

Given a set J of jobs construct the sequence backwards

Iteration i, i = 0, 1, 2, . . .: Let Ji be the set of jobs with total weight
≤ 2i and maximum total processing time

Schedule jobs in

Ji \
⋃
j<i

Jj

in any order at the end, just before all jobs in Ji−1
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Deterministic 4 + ǫ

Idea: put jobs with small w and large p later
Algorithm A.

Given a set J of jobs construct the sequence backwards

Iteration i, i = 0, 1, 2, . . .: Let Ji be the set of jobs with total weight
≤ 2i and maximum total processing time

Schedule jobs in

Ji \
⋃
j<i

Jj

in any order at the end, just before all jobs in Ji−1

Note: Algorithm A is not polynomial time
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Let p(Ji) total processing time of jobs in Ji

Let w(Ji) total weight of jobs in Ji
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Let p(Ji) total processing time of jobs in Ji

Let w(Ji) total weight of jobs in Ji

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Let p(Ji) total processing time of jobs in Ji

Let w(Ji) total weight of jobs in Ji

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

By construction of π, Cπ
j > t only if j ∈ ∪k

i=0Ji.
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Let p(Ji) total processing time of jobs in Ji

Let w(Ji) total weight of jobs in Ji

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

By construction of π, Cπ
j > t only if j ∈ ∪k

i=0Ji. Thus,

(1) W π(t) ≤
k∑

i=0

w(Ji) ≤
k∑

i=0

2i = 2k+1 − 1 (1)

ECI 2011, Buenos Aires - Universal Scheduling – p. 20/31



Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

(1) W π(t) ≤
k∑

i=0

w(Ji) ≤
k∑

i=0

2i = 2k+1 − 1
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

(1) W π(t) ≤
k∑

i=0

w(Ji) ≤
k∑

i=0

2i = 2k+1 − 1

If k = 0 the statement is clearly true
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

(1) W π(t) ≤
k∑

i=0

w(Ji) ≤
k∑

i=0

2i = 2k+1 − 1

Choice of k implies p(Jk−1) < p(J)− t.
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

(1) W π(t) ≤
k∑

i=0

w(Ji) ≤
k∑

i=0

2i = 2k+1 − 1

Choice of k implies p(Jk−1) < p(J)− t. Moreover, by maximality of
p(Jk−1) any π′ must have W π′

(t) > 2k−1.
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

(1) W π(t) ≤
k∑

i=0

w(Ji) ≤
k∑

i=0

2i = 2k+1 − 1

Choice of k implies p(Jk−1) < p(J)− t. Moreover, by maximality of
p(Jk−1) any π′ must have W π′

(t) > 2k−1. Thus,

(2) W ∗(t) ≥ 2k−1
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Theorem: A is robust
4-approximate

Proof: by the Key Lemma it is sufficient to show that W π(t) ≤ 4W ∗(t)

for all t.

Given t let k minimum integer s.t. p(Jk) ≥ p(J)− t

(1) W π(t) ≤
k∑

i=0

w(Ji) ≤
k∑

i=0

2i = 2k+1 − 1

Choice of k implies p(Jk−1) < p(J)− t. Moreover, by maximality of
p(Jk−1) any π′ must have W π′

(t) > 2k−1. Thus,

(2) W ∗(t) ≥ 2k−1

(1) and (2) combine to the result
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A polynomial time algorithm

Algorithm A requires at each iteration to solve a knapsack problem

Instead of using exact solution use a (1 + ǫ) approximation

Hence we obtain a (4 + ǫ) approximation with running time
polynomial in the number of jobs and 1/ǫ
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A randomised algorithm

Randomised Alg: similar to deterministic algorithm

Weight of jobs selected at iteration i

Deterministic: weights sequence 20, 21, . . .

Random: choose a random value y in [0, 1] and then the
sequence of weights is ei+y, i = 0, 1, . . .

Theorem. For every instance the randomized algorithm produces a
random permutation ρ s.t.

E[W ρ(t)] ≤ eW ∗(t), ∀ t
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Lower bound

Consider the following sequence of jobs:

pk = kk, wk = k, k = M,M + 1, . . . ,MM

For any k ≥ M we have
∑

j<k pj < pk. Let T =
∑

k pk
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Lower bound

Consider the following sequence of jobs:

pk = kk, wk = k, k = M,M + 1, . . . ,MM

For any k ≥ M we have
∑

j<k pj < pk. Let T =
∑

k pk

Lemma. If the price of robustness (PoR) of a job order is smaller than α

then any job k > Mα must be succeeded (not necessarily directly) by
some job r with k/α ≤ r ≤ k − 1
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Lower bound

Consider the following sequence of jobs:

pk = kk, wk = k, k = M,M + 1, . . . ,MM

For any k ≥ M we have
∑

j<k pj < pk. Let T =
∑

k pk

Lemma. If the price of robustness (PoR) of a job order is smaller than α

then any job k > Mα must be succeeded (not necessarily directly) by
some job r with k/α ≤ r ≤ k − 1

Given a schedule π with PoR: in backward direction starting from the
last job in the schedule construct a maximal sequence of jobs with
monotonically increasing weight, say length L. Let their weights
starting with the last one be w1, w2, . . . , wL. By Lemma for all k,
wk+1/wk ≤ α and (for α < M ) L ≥ M − 1.
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Lower bound

pk = kk, wk = k, k = M,M + 1, . . . ,MM

For any k ≥ M we have
∑

j<k pj < pk. Let T =
∑

k pk

w1, w2, . . . , wL; wk+1/wk ≤ α; L ≥ M − 1
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Lower bound

pk = kk, wk = k, k = M,M + 1, . . . ,MM

For any k ≥ M we have
∑

j<k pj < pk. Let T =
∑

k pk

w1, w2, . . . , wL; wk+1/wk ≤ α; L ≥ M − 1

Using wk as the number of the job: At time tk = T − p(wk + 1) in the
schedule π a.o. jobs w1, . . . , wk+1 are not completed. OPT has not
completed job wk + 1. PoR of π is at least

α ≥

∑k+1
j=1 w

j

wk + 1
, ∀k = 1, . . . ,M − 1

The recurrence implies that α ≥ 4

QED
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Release dates

Giving the order as before, ignoring release dates, and at any time
processing the highest priority job in that order that is available satisfies

W π(t) ≤ 4W ∗(t), ∀ t
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Release dates

Giving the order as before, ignoring release dates, and at any time processing the
highest priority job in that order that is available satisfies Wπ(t) ≤ 4W ∗(t), ∀t

However, Key Lemma does not hold:
ri = i, pi = wi = 1, i = 1, . . . , n, rn+1 = n+ 1, pn+1 = 1, wn+1 = M .
Clearly the order π = 1, 2, . . . , n, n+ 1 satisfies the inequality.
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ri = i, pi = wi = 1, i = 1, . . . , n, rn+1 = n+ 1, pn+1 = 1, wn+1 = M .
Clearly the order π = 1, 2, . . . , n, n+ 1 satisfies the inequality.

Breakdown at [n, n+ 1]. According to π, job n is processed at time
n+ 1. Long breakdown starting at time t ∈ [n+ 2, n+ 3). Job n+ 1

uncompleted. In OPT job n is uncompleted, yielding ratio of M/1 = M .
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Breakdown at [n, n+ 1]. According to π, job n is processed at time
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uncompleted. In OPT job n is uncompleted, yielding ratio of M/1 = M .

Theorem. The price of robustness in the presence of release dates is
Ω( logn

log logn
)
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Release dates

Giving the order as before, ignoring release dates, and at any time processing the
highest priority job in that order that is available satisfies Wπ(t) ≤ 4W ∗(t), ∀t

However, Key Lemma does not hold:
ri = i, pi = wi = 1, i = 1, . . . , n, rn+1 = n+ 1, pn+1 = 1, wn+1 = M .
Clearly the order π = 1, 2, . . . , n, n+ 1 satisfies the inequality.

Breakdown at [n, n+ 1]. According to π, job n is processed at time
n+ 1. Long breakdown starting at time t ∈ [n+ 2, n+ 3). Job n+ 1

uncompleted. In OPT job n is uncompleted, yielding ratio of M/1 = M .

Theorem. The price of robustness in the presence of release dates is
Ω( logn

log logn
)

(in fact through an adversarial instance with all unit weights wi = 1)
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Release dates

Giving the order as before, ignoring release dates, and at any time processing the
highest priority job in that order that is available satisfies Wπ(t) ≤ 4W ∗(t), ∀t

However, Key Lemma does not hold:
ri = i, pi = wi = 1, i = 1, . . . , n, rn+1 = n+ 1, pn+1 = 1, wn+1 = M .
Clearly the order π = 1, 2, . . . , n, n+ 1 satisfies the inequality.

Breakdown at [n, n+ 1]. According to π, job n is processed at time
n+ 1. Long breakdown starting at time t ∈ [n+ 2, n+ 3). Job n+ 1

uncompleted. In OPT job n is uncompleted, yielding ratio of M/1 = M .

Theorem. The price of robustness in the presence of release dates is
Ω( logn

log logn
)

No upperbound so far
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Release dates: Lower bound

Theorem. The PoR in the presence of release dates is Ω( log n
log log n

)
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Theorem. The PoR in the presence of release dates is Ω( log n
log log n

)

Instance: wj = 1, pj = 2j , rn−1−j =
∑

i>j 2
i =

∑

i>j pi, j = 0, 1, . . . , n− 1
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Release dates: Lower bound

Theorem. The PoR in the presence of release dates is Ω( log n
log log n

)

Instance: wj = 1, pj = 2j , rn−1−j =
∑

i>j 2
i =

∑

i>j pi, j = 0, 1, . . . , n− 1

Lemma 1. (Erdös and Szekeres, 1935.) Given a sequence of n distinct
numbers x1, x2, . . . , xn, we can decompose this set into k increasing
subsequences ℓ1, ℓ2, . . . , ℓk such that:

There is a decreasing subsequence of length k;

If xi belongs to ℓa then for all j > i if xj < xi then xj belongs to ℓb and b > a.
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i>j pi, j = 0, 1, . . . , n− 1

Lemma 1. (Erdös and Szekeres, 1935.) Given a sequence of n distinct
numbers x1, x2, . . . , xn, we can decompose this set into k increasing
subsequences ℓ1, ℓ2, . . . , ℓk such that:

There is a decreasing subsequence of length k;

If xi belongs to ℓa then for all j > i if xj < xi then xj belongs to ℓb and b > a.

Lemma 2. Universal schedule with decreasing subsequence ℓ has ratio at least |ℓ|.
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log log n

)

Instance: wj = 1, pj = 2j , rn−1−j =
∑

i>j 2
i =

∑

i>j pi, j = 0, 1, . . . , n− 1

Lemma 1. (Erdös and Szekeres, 1935.) Given a sequence of n distinct
numbers x1, x2, . . . , xn, we can decompose this set into k increasing
subsequences ℓ1, ℓ2, . . . , ℓk such that:

There is a decreasing subsequence of length k;

If xi belongs to ℓa then for all j > i if xj < xi then xj belongs to ℓb and b > a.

Lemma 2. Universal schedule with decreasing subsequence ℓ has ratio at least |ℓ|.

Let j first job in ℓ. Then breakdown at [rj , r0] and [r0 + 2j − 1, L]. At time r0 all jobs are
released. At time r0 (end of first breakdown), job j starts processing and is not
completed by r0 + 2j − 1. Hence all jobs of ℓ are uncompleted, whereas an optimal
schedule can complete all jobs except j. Choose L large enough.
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Release dates: Lower bound
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)
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numbers x1, x2, . . . , xn, we can decompose this set into k increasing
subsequences ℓ1, ℓ2, . . . , ℓk such that:

There is a decreasing subsequence of length k;

If xi belongs to ℓa then for all j > i if xj < xi then xj belongs to ℓb and b > a.

Lemma 2. Universal schedule with decreasing subsequence ℓ has ratio at least |ℓ|.
Lemma 3. Universal schedule with decomposition ℓ1, ℓ2, . . . , ℓk has ratio at least

|ℓi|+|ℓi−1|+···+|ℓ1|

1+|ℓi−1|+···+|ℓ1|
, i = 1, . . . , k.
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Release dates: Lower bound

Theorem. The PoR in the presence of release dates is Ω( log n
log log n

)

Instance: wj = 1, pj = 2j , rn−1−j =
∑

i>j 2
i =

∑

i>j pi, j = 0, 1, . . . , n− 1

Lemma 1. (Erdös and Szekeres, 1935.) Given a sequence of n distinct
numbers x1, x2, . . . , xn, we can decompose this set into k increasing
subsequences ℓ1, ℓ2, . . . , ℓk such that:

There is a decreasing subsequence of length k;

If xi belongs to ℓa then for all j > i if xj < xi then xj belongs to ℓb and b > a.

Lemma 2. Universal schedule with decreasing subsequence ℓ has ratio at least |ℓ|.
Lemma 3. Universal schedule with decomposition ℓ1, ℓ2, . . . , ℓk has ratio at least

|ℓi|+|ℓi−1|+···+|ℓ1|

1+|ℓi−1|+···+|ℓ1|
, i = 1, . . . , k.

For all j ∈ ℓi breakdown [rj , rj + ǫ] and for all j ∈ ℓi+1, . . . , ℓk breakdown
[rj , rj + 2j ] = [rj , rj + pj ]. At time 2n − 1 all jobs in ℓi, ℓi+1, . . . , ℓk are uncompleted.
Compare with a schedule that leaves only the last job of ℓi and all jobs in ℓi+1, . . . , ℓk
uncompleted. Thus a breakdown during [2n − 1, L] for L large enough yields the proof.
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Release dates: Lower bound

Theorem. The PoR in the presence of release dates is Ω( log n
log log n

)

Instance: wj = 1, pj = 2j , rn−1−j =
∑

i>j 2
i =

∑

i>j pi, j = 0, 1, . . . , n− 1

Lemma 1. (Erdös and Szekeres, 1935.) Given a sequence of n distinct
numbers x1, x2, . . . , xn, we can decompose this set into k increasing
subsequences ℓ1, ℓ2, . . . , ℓk such that:

There is a decreasing subsequence of length k;

If xi belongs to ℓa then for all j > i if xj < xi then xj belongs to ℓb and b > a.

Lemma 2. Universal schedule with decreasing subsequence ℓ has ratio at least |ℓ|.
Lemma 3. Universal schedule with decomposition ℓ1, ℓ2, . . . , ℓk has ratio at least

|ℓi|+|ℓi−1|+···+|ℓ1|

1+|ℓi−1|+···+|ℓ1|
, i = 1, . . . , k.

Proof of Theorem: Let α performance guarantee. Using Lemma 3, any |ℓi| ≤ αk−i+1

(by induction).
n =

∑k
i=1 |ℓi| ≤

∑k
i=1 α

k−i+1 ≤ αk+1.
By Lemma 2 k ≤ α. Therefore logn = O(α logα) hence the lower bound.
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Release dates

Positive result:

Worst-case ratio of 5 (tight) if wj/pj = β, for all j.
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Release dates

Positive result:

Worst-case ratio of 5 (tight) if wj/pj = β, for all j.

For wj/pj = β, for all j the price of robustness at least 3.
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Other results

The algorithm can be extended to special cases of jobs with
precedence constraints

The first constant ratio algorithm for scheduling in the presence of
unavailable periods

If there is only one unavailability period (speed 0) then there exists
a FPTAS
Independently achieved by Kellerer and Strusevich, but ours has
smaller running time
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Open problems

Release dates:

Find a universal schedule that has performance ratio O(log n).

Multiple machines:

Consider two machines; if both machines can break
simultaneously then it is easy to see that there is no robust
approximation algorithm unless P=NP (reduction from
partition)

Good robust model for multiple machines; e.g. (at most) 1
machine breaking/slowing down at a time
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Open problems

Expensive intervals:

Some time intervals are freely available and for all other
(expensive) time units can be made available at cost c per
time unit. Still minimising

∑
wjCj

Without release dates easy, but not trivial

With release time and pj = 1 is easy, but not trivial

With release times and general processing time not known
(guess that it is easy without weights)
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