
2-stage stochastic linear programming

Yesterday, we considered problems that were modelling an extreme form of un-
certainty. The decision maker, just knows the sort of problem he is going to be
solved, a scheduling problem, a rent-or-buy problem, etc, but he does not know
anything about the parameters of the problem.

Today we treat a model in which parameters are uncertain, but they can be
modelled as stochastic variables. Let us first study a very general class of such
stochastic optimisation problems.

Take a linear programming problem:

max cx

subject to Ax ≤ b

T̃x ≤ ξ̃

with b ∈ Rm, ξ̃ ∈ Rd, and A an m× n matrix, T̃ an d× n matrix, and p ∈ Rn.
The parameters with a tilde over them are stochastic variables. We know a
probability distribution of their values, but we don’t know their values exactly.

Clearly this problem is ill-defined, since a solution x that is optimal for one
realisation of T̃ and ξ̃ may even be infeasible for another.

Two main directions have been taken in the literature to arrive at sensible mod-
els. In the conceptually easiest, violation of the uncertain constraints is allowed
to occur with a probability that does not exceed a prespecified level, giving the
so-called probabilistic constraints problem. The best comprehensive survey of
this field is the book:

A. Prekopa, Stochastic Programming, Mathematics and its applications Vol. 324,
Kluwer, Dordrecht, 1995.

We consider the other direction: the 2-stage stochastic programming problem
(or also called stochastic recourse problem). Conceptually one should think of
the decision process taking place in two stages. In the first, values for the first
stage variables x are chosen. In the second, upon a realisation of the random
parameters, a recourse action is to be taken in case of infeasibilities. Costs are
attached to the various possible recourse actions leading to the second stage (or
recourse) problem, to choose the optimal action given the infeasibilities. The
expected cost of the optimal recourse action is then added to the objective func-
tion. For a comprehensive review of the extensive literature we refer to

J. Birge, F. Louveaux, Introduction to stochastic programming, Springer-Verlag,
New York, 1997.
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A generic mathematical programming formulation for this problem is

max cx+ E[max{q̃y | Wy ≤ T̃ x− ξ̃, y ∈ Rn1}]
subject to Ax ≤ b.

(1)

with q̃ ∈ Rn1 and W an d × n1 matrix. In the literature W is sometimes al-
lowed to be a random matrix. However, this may cause the feasible region to be
non-convex in terms of x. We concentrate on the so-called fixed recourse model
in which W is fixed. Moreover, we assume that W is such that for any x and
any realisation of T̃ and ξ̃ there exists a feasible solution y in the second stage
problem. This property of W is called the complete recourse property, and the
model is accordingly called the complete recourse model.

The problem is often more compactly written as:

max cx+Q(x)

subject to Ax ≤ b.

with

Q(x) = E[max{q̃y | Wy ≤ T̃ x− ξ̃, y ∈ Rn1}]

Or we could even make it more compact by writing

Q(x) = E[v(T̃ x− ξ̃)]

with

v(T̃ x− ξ̃) = max{q̃y | Wy ≤ T̃ x− ξ̃, y ∈ Rn1}.

Seen in this way v(T̃ x − ξ̃) is the so-called value function of the second stage
LP. It is well-known (and also not to hard to prove) that the value function of
a maximisation problem is concave. Hence Q(x) seen as a (possibly infinite)
convex combination of value functions is also concave. Thus, in fact we have
a concave optimisation problem with a polyhedral, hence convex, feasibility re-
gion. Hence, the theory of convex optimisation tells us that we can solve this by
the ellipsoid method. However, if we think that this makes the 2-stage stochas-
tic LP be in P then we overlook an essential complication as we will see soon.

Let us first study the modelling power of such a problem for combinatorial op-
timisation under uncertainty. After that we consider the complexity of solving
stochastic linear programming problems and review some solution methods.
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Modelling 2-stage combinatorial problems

Set Cover:
Given is a universe U of elements e1, . . . , en and a family of sets S1, . . . , Sm,
subsets of U . Set Si has weight wi. Find a collection of sets of total minimum
weight such that each element is contained in (covered by) at least one of the
sets in the collection.

This is a famous benchmark combinatorial optimisation problem. The greedy
algorithm that always chooses as the next set the one that covers most yet un-
covered elements has an approximation ratio of lnn, and this is best possible
for any polynomial time algorithm, essentially unless P=NP.

Now think of the following two-stage stochastic setting. There is uncertainty
about the elements to be covered. Thus we know the universe but we don’t
know which elements will be required to be covered. In the stochastic program-
ming setting each possible A ⊂ U of elements has a probability pA of occurring.
Each such set is, what we call, a possible scenario.

We can decide to buy a set Si in the first stage at first-stage (a priory) cost
(weight) w1

i or in the second stage at second stage (a posteriory) cost w2
i , or, of

course, not buy Si at all. I emphasize that in the first stage we buy sets without
having seen the scenario that we will have to cover in the second stage. After
having bought some sets in the first stage a subset A ⊂ U is drawn according
to the probabilities given, and then additional sets have to be bought in the
second stage in order to cover the elements of A that have not been covered yet
by the sets selected in the first stage.

The objective is to minimise the expected total weight: i.e., the sum of the total
first stage cost and the expectation, over all second stage scenarios A, of the
total second stage cost in case of scenario A.

We formulate it as a deterministic equivalent integer linear program (ILP): we
use xi to denote that Si is selected in stage 1 (xi = 1) or not (xi = 0) and rA,i

as the recourse variable that indicates if Si is selected in the second stage under
scenario A (rA,i = 1) or not (rA,i = 0). We write immediately the LP-relaxation.

min
∑m

i=1 w
1
i xi +

∑
A∈2U pA

∑m
i=1 w

2
i rA,i

s.t.
∑

i:e∈Si
xi +

∑
i:e∈Si

rA,i ≥ 1 ∀A, ∀e ∈ A

xi, rA,i ≥ 0.

Clearly a {0, 1} solution corresponds exactly to a feasible solution to our prob-
lem.

Suppose we have a solution (x, r) to the LP. For every element e we have∑
i:e∈Si

xi ≥ 1/2 or in any scenario that contains e
∑

i:e∈Si
rA,i ≥ 1/2. Let
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E = {e |
∑

i:e∈Si
xi ≥ 1/2}. Then 2x is a feasible (fractional) solution for the

set cover problem restricted to E. Thus if we have an approximation algorithm
for Set Cover that has approximation ratio ρ, then we can find a set cover of
E of cost at most ρ

∑m
i=1 w

1
i xi. We take the sets in this set cover as our first

stage decision x̄.

Similarly, 2rA is a feasible fractional set cover for all the elements in A \E and
hence all these elements can be covered at cost bounded by ρ

∑m
i=1 2w

2
i rA,i.

Thus, the first stage decision x̄ gives a solution of cost at most 2ρ times the
solution value of (x, r). In particular this implies that we obtain a solution that
is within 2 lnn from the optimal solution, under the assumption that we are
able t find the optimal solution of the LP.

In the black box model the LP has an exponential number of variables and
constraints. People that would hope that still some clever separation combined
with column generation might work will be disappointed in the next part when
I’ll treat the complexity. Thus, it is no option to compute the optimal solution.
On the other hand we only need to find the values for x, and indeed we have
seen that we just need to find the set E from the LP and find an approximate
set cover of E. So certainly the output does not need polynomial space.

Let us rewrite the problem in the compact form that I have presented before and
then turn to solving 2-stage stochastic linear programming problems in general.

min
∑m

i=1 w
1
i xi +Q(x)

s.t. xi ≥ 0.

with

Q(x) =
∑
A∈2U

pAfA(x)

and

fA(x) = min
∑m

i=1 w
2
i rA,i

s.t.
∑

i:e∈Si
rA,i ≥ 1−

∑
i:e∈Si

xi ∀e ∈ A

rA,i ≥ 0.

So our only hope is to avoid to make function evaluations of the expected second
stage costs, or to find a way to calculate such function values efficiently. We will
now see that the last option is hopeless unless the polynomial hierarchy collapses.

Exercise 2. Take your favourite combinatorial optimization problem and for-
mulate a 2-stage stochastic programming version.
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Complexity

Suppose the realisations of the stochastic variables come in scenarios:
(q1, T 1, ξ1), (q2, T 2, ξ2), . . . , (qK , TK , ξK), with K denoting the total number of
possible realisations. Each realization (qk, T k, ξk) has a probability pk of occur-
rence. The problem can now be formulated as

max cx+
K∑

k=1

pk(qk)T yk

s.t.
Ax ≤ b,
T kx + Wyk ≤ ξk, k = 1, . . . ,K.

If, as input of the problem, each scenario and its corresponding probability has
to be specified completely, then the input size of the problem is just the size
of the binary encoding of all the parameters in this deterministic equivalent
problem and hence the problem is polynomially solvable.

Another extreme is that the distribution is not specified at all. Samples can be
requested for by an oracle. This is referred to as the black box model. It is not
so difficult to prove that the objective function of (1) is concave. Therefore, the
two-stage stochastic programming problem boils down to maximising a concave
function over a convex (polyhedral) set, which seems to be doable, even in the
black box model.

However, the complexity of the problem is highly dominated by any single eval-
uation of the objective function, which we show using a slightly less powerful
model for the randomness: we assume that the parameters are independently
distributed random variables. Under this model the problem is ♯P-hard. Since
the proof is so easy, let me show it to you.

Consider the problem:

Definition 0.1. Graph reliability. Given a directed graph with m edges
and n vertices, determine the reliability of the graph, defined as the probability
that two given vertices u and v are connected, if each edge fails independently
with probability 1/2.

This problem is ♯P-hard proven by L. Valiant, SIAM J. Comput. 1979.

♯P is a class of counting problems. Remember that NP is the class of decision
problems asking if fr a given problem at least 1 solution exists. ♯P asks how
many solutions exist. Thus, clearly NP⊂ ♯P. It is highly unlikely that NP= ♯P.

The reduction is now essentially giving a two-stage linear programming formu-
lation for Graph reliability
Take any instance of graph reliability, i.e. a network G = (V,A) with two
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fixed vertices u and v in V . Introduce an extra edge from v to u, and intro-
duce for each edge (i, j) ∈ A a variable yij . Give each edge a random weight
qij except for the edge (v, u) that gets a deterministic weight of 1. Let the
weights be independent and identically distributed (i.i.d.) with distribution
Pr{qij = −2} = Pr{qij = 0} = 1/2. The event {qij = −2} corresponds to fail-
ure of the edge (i, j) in the Graph reliability instance. If, for a realization
of the failures of the edges, the network has a path from u to v, then there is a
path from u to v consisting of edges with weight 0 only and vice versa.

Denote A′ = A ∪ (v, u). Now define the two-stage stochastic programming
problem:

max{−cx+Q(x) | 0 ≤ x ≤ 1}

with

Q(x) = E[max{
∑

(i,j)∈A

qijyij + yvu |
∑

i:(i,j)∈A′

yij −
∑

k:(j,k)∈A′

yjk = 0 ∀j ∈ V,

yij ≤ x ∀(i, j) ∈ A}],

where c is a parameter.

Suppose that for a realization of the failures of the edges there is a path from
u to v in the network. As we argued the costs qij = 0 for edges (i, j) on the
path. For such a realization, the optimal solution of the second-stage problem,
is obtained by setting all yij ’s corresponding to edges (i, j) on this path and yvu
equal to x, their maximum feasible value, and setting yij = 0 for all (i, j) not
on the path. This yields solution value x for this realization.

Suppose that for a realization the graph does not have a path from u to v, im-
plying in the reduced instance that on each path there is an edge with weight −2
and vice versa, then the optimal solution of the realized second-stage problem
is obtained by setting all yij ’s equal to 0, and also yvu = 0, yielding solution
value 0.

Therefore, the network has reliability R if and only if Q(x) = Rx. This implies
immediately that evaluation of Q in a single point x > 0 is ♯P-hard. Now it just
remains to be shown that to solve a two-stage stochastic programming problem
we need to have at least one evaluation of the objective function.

Q(x) = Rx implies that the objective value of the 2-stage stochastic LP is
(R − c)x. Hence, if c < R then the optimal solution is x = 1 and the optimal
value is R − c, whereas if c ≥ R, the optimal solution is x = 0 with optimal
value 0. Since R can have at most 2m possible values, bisection search on c will
reveal the correct value of R is we can solve the 2-stage stochastic LP.

What we proved is:
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Theorem 0.1. Two-stage stochastic programming with discrete distributions
on the parameters is ♯P-hard.

In [Dyer & Stougie 2006] it is also shown that the same holds for continuous
distributions. Also one can easily think of more than two stages. If the number
of stages is part of the input of the problem then it is shown in [Dyer & Stougie
2006] that the problem is even PSPACE-hard.

Let me now sketch how 2-stage stochastic linear programming can be solved
with a polynomial time randomised approximation scheme.

Methods for solving 2-stage stochastic LP

An efficient solution method for convex optimisation is the ellipsoid method by
Khachyan. I will give a pictural explanation of this method on the blackboard.
The proof of efficient theoretical performance is based on showing that the vol-
ume of the consecutive ellipsoids is shrinking in each step by a sufficient amount.

So far, nothing is different for 2-stage stochastic LP, under the assumption that
we can find gradients or subgradients of the objective function efficiently. Just
to remind you:

A subgradient of function g in the point x, restricted to a set P , is any vector d
such that for any y ∈ P we have g(y)− g(x) ≥ d(y − x).

It is clearly excluded that we can compute exact subgradients. Instead what
we propose is to find an approximation (estimation)of the subgradient, called a
ω-subgradient:

An ω-subgradient of function g in the point x, restricted to a set P , is any vector
d such that for any y ∈ P we have g(y)− g(x) ≥ d(y − x)− ωg(x).

Clearly, we may not find the optimum, but get an approximate of the optimal so-
lution with a value that differs from the optimal one by a factor depending on ω.

Let us see how we may find approximate subgradients for the LP-relaxation of
the 2-stage stochastic set cover problem. Remember the objective function:

min
∑m

i=1 w
1
i xi +Q(x)

with

Q(x) =
∑
A∈2U

pAfA(x)
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and

fA(x) = min
∑m

i=1 w
2
i rA,i

s.t.
∑

i:e∈Si
rA,i ≥ 1−

∑
i:e∈Si

xi ∀e ∈ A

rA,i ≥ 0.

∆Q(x) =
∑

A∈2U pA∆fA(x). Everyone knowing duality theory should know
how to find ∆fA(x). The dual of fA(x) is

fA(x) = max
∑

e(1−
∑

i:e∈Si
xi)zA,e

s.t.
∑

e∈Si
zA,e ≤ w2

i ∀Si

zA,e = 0 ∀e /∈ A.

So, − the optimal dual variables in scenario A give the gradient of fA(x). Hence
∆f(x) is obtained by taking the expectation over the all scenarios.

But expected values can be estimated by sampling! The rest is technical detail
that I leave to yourself to read if you are interested.
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