
On-line scheduling

Now we consider an on-line model in which time plays a role. Before any time
t nothing is known what comes at time t or after. Decisions may be postponed
at the price of time that is passing by, for which one pays in objective value.
Consider the off-line scheduling problem 1 | rj |

∑
Cj :

Total completion time scheduling with release dates
Given a single machine and n jobs, each having a processing time pj and a
release date rj . Find a schedule of the jobs such that each job j is scheduled in
an uninterrupted time interval of length pj which does not start before rj and
such that the sum of the completion times of the jobs is minimised.

This problem is NP-hard, but there exists a PTAS. The version without release
dates is easily seen to be solved by the shortest processing time first rule (SPT).
(Just use a simple exchange argument.) Similarly easy it is to prove that the
version in which preemption of the jobs is allowed, then the shortest remaining
processing time first rule (SRPT) solves the problem.

We are interested in the online version. We assume that at time 0 we know noth-
ing. Jobs are released over time and as soon as a job j is released we immediately
get to learn its processing time. Before the release time we know nothing about
the job, not even that it exists. Once we have a job and the machine is idle we
may decide to start the job, and then we have to finish it uninterruptedly, or we
may wait and see if other (smaller) jobs arrive soon, which we may like to give
precedence. So we are allowed to postpone decisions. Only history is irrevocable.

Let us first think about how things can go wrong for an online algorithm due to
this lack of information: i.e, let us try to find a lower bound on the competitive
ratio for any algorithm.

Suppose at time 0 we see job 1 with p1 = 1. Suppose an online algorithm start
this job at time x. Then if x ≥ 1, the adversary will not release any further job
and he finishes at time 1, while the online algorithm does not finish before time
2, yielding a competitive ratio of at least 2.

So suppose that x < 1. Then the adversary releases at time x+ ϵ an enormous
set of n jobs with processing time very small. Think of these jobs as having
processing time 0. Hence the adversary schedules the small jobs first adding
n(x+ ϵ) to the objective value and then the first job adding x+ ϵ+1; a total of
(n+1)(x+ ϵ) + 1. Whereas the online algorithm has just started job 1 and has
to wait until it completes before it can schedule the small jobs, yielding a total
completion time of (n+ 1)(x+ 1). For ϵ → 0 and n → ∞, we obtain a ratio of
(x+ 1)/x, which is minimised by x = 1, and in that case is equal to 2.

1

Theorem 0.1. No deterministic online algorithm for on-line minimising total
completion time on a single machine can have a competitive ratio smaller than
2.

In the literature several algorithms have been proposed that have a competitive
ratio of 2. Let us study the most elegant among them. It is also the algorithm
that can be used as the basis for a more sophisticated randomised algorithm, to
which we come back later.

The algorithm just ignores the forbidding of preemption and uses the (online)
SRPT-rule to build a schedule. This preemptive schedule is then used as the
basis for building a non-preemptive schedule in the following way.

Algorithm: α-point.
Simulate on a single machine the (on-line by SRPT) connstruction of a preemp-
tive schedule P . As soon as in this preemptive schedule an α-fraction of the
processing time of a job has been completed, make it available for scheduling in
the non-preemptive schedule by adding this job at the back of the list of jobs
that became available before. Always schedule a job as soon as the machine
completed all the previous jobs in the list of available jobs.

So just to repeat: as soon as a job in the preemptive schedule has seen an
α-fraction of its processing time completed, it is made available for the non-
preemptive schedule and is scheduled directly after the jobs for which an α-
fraction of their processing time has been completed in the preemptive schedule
before.

Our algorithm will not start the j-th job in the list of available jobs until the
j− 1-st is completed even if it may be profitable to switch them if at some time
t they are both available and jod j − 1 has longer processing time than job j.
Our analysis does not require this algorithmic enhancement.

Let Cα
j be the completion time according to the α-point schedule and CP

j ac-
cording to the preemptive schedule.

Theorem 0.2. Given a preemptive schedule P for 1 | rj , pmtn |
∑

Cj, al-
gorithm α-point yields in O(n) time, a non-preemptive schedule in which,∑

j C
α
j ≤ (1 + (1/α))

∑
j C

P
j .

Proof. Index the jobs by the order of their α-points in the preemptive schedule
P . We distinguish two situations.

In the first one, when j’s α-point is reached (when job j becomes available for
the non-preemptive online schedule, the machine on which we are building the
online (non-preemptive) schedule is idle. In that case we start the job immedi-
ately and finish latest αpj after CP

j . Hence Cα
j ≤ (1 + α)CP

j ≤ (1 + (1/α))CP
j ,

2

since α ≤ 1.

In the second situation at j’s α-point the machine on which we are building
the online (non-preemptive) schedule is processing some earlier available job.
But then the last time the machine was idle was at the α-point of some earlier
available job. Call this time t. And hence,

Cα
j ≤ t+

j∑
k=1

pk. (1)

Clearly CP
j ≥ t. We also know that CP

j ≥ α
∑j

k=1 pk, since the α-fractions of

jobs 1, . . . , j must run before time CP
j . Plugging these last two inequalities into

(1) yields the proof.

Clearly, the best value for α in the range is α = 1, yielding a ratio of 2.

To see that for each α the bound in the theorem is asymptotically tight, consider
the following class of instances. At time 0, we release a job with processing time
1. At time α − ϵ we release a job with processing time ϵ and at time α + ϵ we
release n jobs of processing time 0.

The optimal solution processes the first job last and the others in the order
given, yielding a total completion time of α+ n(α+ ϵ) + α+ ϵ+ 1.

The α-point algorithm will first schedule job 2 then job 1 and then the n jobs of
length 0, yielding a total completion time of α+(α+1)+n(α+1). For n → ∞
and ϵ → 0 the ratio tend to 1 + (1/α).

This suggest that we can fool the adversary by not revealing the α we choose.
This is exactly the motivation of the randomized algorithm, which plays against
an oblivious adversary. Thus the adversary knows the distribution with which
the randomized α-point algorithm is playing but does not see the realisation.
We wish to study the ratio: E[

∑
Cα

j /
∑

COPT
j].

Algorithm Randomized α-point: draw α ∈ (0, 1] according to probability
density function f and apply α-point.

To analyze the competitive ratio of this algorithm, let us do a slightly more
precise analysis of what happens with the deterministic α-point algorithm. Take
the completion time of job i in the preemptive schedule CP

i . Let Jβ
i the set of

jobs that by time CP
i have processed exactly a β-fraction of their processing

time. Let Sβ
i =

∑
j∈Jβ

i
pj . Let Ti be the total idle time before CP

i . It is easy to

see that

Lemma 0.3. CP
i = Ti +

∑
0≤β≤1 βS

β
i

3

Let us split it out a bit more:

CP
i = Ti +

∑
β<α

βSβ
i +

∑
β≥α

αSβ
i +

∑
β≥α

(β − α)Sβ
i

Let JB = {j ∈ ∪β≥αJ
β
i }. Clearly the jobs that run before job i in the α-point

schedule belong to JB .

Now we are changing the preemptive schedule. The following procedure is shown
in a picture on the blackboard and can be read in the lecture notes. We move
pieces of jobs in the preemptive schedule such that jobs in JB get all their pro-
cessing time that they had in the preemptive schedule between their α-point and
CP

i directly after their α-points (possibly pushing job-pieces to a later time in
the schedule in case overlap would occur). Clearly CP

i does not become larger,
since we are only reshuffling pieces of jobs before CP

i and don’t insert idle time.

Let xj be the fraction of job j finished by time CP
i . Thus we have that for any

job j ∈ JB a piece of size (xj −α)pj is schedules consecutively after j’s α-point.

Then we move for each job in JB all the pj − (xj − α)pj remaining processing
time (that is the processing time of j remaining to be done at time CP

i plus the
αpj time done before j’s α-point) directly after the piece of size (xj − α)pj .

We then have a schedule in which all jobs that come before i in the α-point sched-
ule are completed non-preemptively before job i is completed. The completion
time of job i in this schedule is therefore an upper bound on its completion time
in the α-point schedule. It has become bounded by:

CP
i +

∑
j∈JB

pj − (xj − α)pj = CP
i +

∑
β≥α

(1− β + α)Sβ
i

Inserting CP
i = Ti +

∑
0≤β≤1 βS

β
i from the lemma yields

Cα
i ≤ Ti +

∑
β≥α

(1 + α)Sβ
i +

∑
β<α

βSβ
i . (2)

Based on this bound we will be able to give a bound on the expected completion
time for each job i in the randomised α-point schedule.

Theorem 0.4. Given that α is drawn according to density f over [0, 1], we
have for each job i that E[Cα

i ≤ (1 + δ)CP
i], with

δ = max

∫ β

0

1 + α− β

β
f(α)dα.

The proof is really just taking (2) and taking integral over α of the right-hand
side times f(α)

E[Cα
i] ≤

∫ 1

0

Ti +
∑
β≥α

(1 + α)Sβ
i +

∑
β<α

βSβ
i

 f(α)dα.

4

and then taking outside of the integral the terms that are independent of α; i.e.,
Ti and Sβ

i . You can read it yourself in the lecture notes.

If we draw α according to density f(α) = eα

e−1 then δ = 1
e−1 . Thus, the following

competitive ratio follows directly.

Theorem 0.5. Randomised α-point with α according to density f(α) = eα

e−1
has competitive ratio e

e−1 ≈ 1.58.

It can be shown that this is in fact the best ratio that can be obtained by any
randomised algorithm on this on-line problem. For that I’ll explain a very pow-
erful tool to prove such lower bounds.

Explain Yao’s minimax principle. A good explanation of this technique is found
in the book R. Motwani & P. Raghavan, Randomised Algorithms, Cambridge
University Press.

Applying Yao’s minimax principle we specify a random instance of the prob-
lem and analyse what any algorithm could attain in expectation on this instance.

• At time 0 one job with processing time 1 arrives.

• With probability 1− e−1
n no further jobs arrive.

• With probability e−1
n one set of n− 1 jobs with processing time 0 arrives

at some time x, which is a random variable over the interval (0,1] having
probability density function f(x) = e

e−1 e−x.

First we derive the expected optimal objective value E[
∑

COPT
j] on the random

instance. Observe that if only the first job is released the optimal value is equal
to 1. If at any time x ≤ 1 − 1

n the set of n − 1 jobs is also released then it is
profitable to schedule the n − 1 jobs before the first job, yielding an objective
value of nx + 1. If the n − 1 jobs arrive between time 1 − 1

n and 1 it is better
to process the first job first giving a sum of completion times equal to n. These
observations lead to the following upper bound on the expected optimal solution
value.

E[
∑

COPT
j] ≤

(
1− e− 1

n

)
· 1 + e− 1

n

∫ 1

0

(nx+ 1)f(x)dx

= 1− e− 1

n
+

e

n

∫ 1

0

e−x(nx+ 1)dx

= 1− e− 1

n
+

e

n
(−ne−1 − ne−1 − e−1 + n+ 1)

= e− 1.

Any deterministic on-line algorithm will have to start scheduling the first job
at some point in time. Consider an algorithm that starts processing the first

5

job at time t, unless the set of n − 1 jobs arrives before t. In the latter case
it is obviously better for the algorithm to schedule the n − 1 jobs first, before
starting the (big) first job. Moreover, since the deterministic algorithm knows
the distribution, he will start the first job immediately after having processed
the other jobs since no further jobs will arrive. In this case a cost of nx+1 will
be incurred. In case the set of n − 1 jobs arrives after t then these jobs have
to wait until the first job is finished producing an objective value of (t + 1)n.
Obviously, if the set of n− 1 jobs does not arrive the only job will be completed
at time t+1. We will denote the expected solution value of an on-line algorithm

that does not start the first job before time t by E[
∑

C
OL(t)
j]. Now,

E[
∑

C
OL(t)
j] = (1− e− 1

n
)(t+ 1) +

e− 1

n

∫ t

0

e

e− 1
e−x(nx+ 1)dx

+
e− 1

n

∫ 1

t

e

e− 1
e−x(t+ 1)ndx

= e− t(e− 1) + e1−t − 1

n

≥ e− e− 1

n
.

This last inequality follows from minimizing the expected value with respect to
t over the interval [0, 1]. The minimum is obtained at either t = 0 or t = 1.
Thus, for any t ∈ [0, 1],

E[
∑

C
OL(t)
j]

E[
∑

COPT
j]

≥
e− e−1

n

e− 1
.

The ratio can be made arbitrarily close to e
e−1 , by choosing n large enough. The

observation that it is useless for any algorithm to start the first job after time
1 shows that the above ratio holds for the best possible deterministic algorithm
on this random instance.

Some of you might object that we do not prove a lower bound on E[
∑

C
OL(t)
j∑

COPT
j

],

but the following lemma shows that what we showed is in fact enough.

Lemma 0.6. Given an on-line optimization problem, with possible input se-
quences I, and possible algorithms A, both possibly infinite, for any random
sequence Ip, and any randomized algorithm Aq, we have

min
A∈A

EIp [Z
A(Ip)]

EIp [Z
OPT (Ip)]

≤ max
I∈I

EAq [Z
Aq (I)]

ZOPT (I)

provided that the left hand side is bounded.

Proof. Suppose that there exists a randomized algorithm Aq with competitive
ratio c. Then ∀I ∈ I

cZOPT (I) ≥ EAq [Z
Aq (I)].

6

Hence,

cEIp [Z
OPT (Ip)] ≥ EIp [EAq [Z

Aq (Ip)]]

= EAq [EIp [Z
Aq (Ip)]]

≥ min
A∈A

EIp [Z
A(Ip)].

Exercises

Exercise 1. Consider the following scheduling problem with set-up times:

Given is a set of n jobs and a set of m machines. Each job has a processing
time pj . Jobs may be preempted and, even stronger, several machines can work
on any job simultaneously. However, before each part of job j that is processed
a fixed time sj must be spend on preparing the machine for job j. You may
assume that sj = s for all j. The objective is to minimize the total completion
time.

For the online version of this problem, in which jobs have also (unknown) release
dates, find a lower bound in the competitive ratio for deterministic online algo-
rithms and design a deterministic algorithm and analyse its competitive ratio.
If you like you may take two machines (m = 2). Do not worry if you do not
find matching lower and upper bounds.

7

