
API Testing Using Contract Abstractions

Hernán Czemerinski – hczemeri@dc.uba.ar

Departamento de Computación, FCEyN, Universidad de Buenos Aires

Why Testing Matters?

Softw
are

Fails
!!!

Goal: To Find Bugs

Unpleasant
To Do by Hand

Contract-Based Software

Contra
ct

Based

API

Hypothesis

Test suites with higher coverage of the enabledness model

are likely to:

ü H1: be more effective at catching faults

ü H2: obtain a higher code coverage

But… what do we mean by higher coverage of the

enabledness model?

We consider two types:

· state coverage: it is important to reach each state, but

not necessarily how it is reached; could be satisfied

without executing every action

· transition coverage: it is important to execute every

action everywhere it is possible; it implies the execution

of all actions

Experimental Setup

In order to obtain experimental data for contrasting our hypothesis we

choose Java APIs and:

· generate enabledness models from a contract-based specification

· generate randomly JUnit Tests using Randoop tool for the API

· generate mutants of the API by executing the Mu-Java framework

· instrument API mutants for logging how they exercise the model and the

percentage of code coverage they achive

· execute unit tests on mutated versions of the API and detect behavioral

differences found with respect to the oracle (API original version)

Enabledness Models

API specifications are often given in terms of contracts:

ü they say a lot about what each function does, but...

X don’t say much about how it should be used as a whole; i.e. its protocol

For having such understanding we use enabledness models

· each state of the model represents a particular set of enabled/disabled actions

· a transition from state A to state B labeled with c means that when the available actions of

the API are those that A represents, after the execution of c the new set of enabled actions

could eventually be those that B represents

· we build the enabledness model by using the Contractor tool, which takes a contract-based

API specification as input and produces the model as output

Partially full

Empty

Full {Pop}{Push, Pop}{Push}

Push

Pop

Push Push

PopPop

New

Stack

Done and Next

What’s next:

We are currently running the experiment on the Java Socket and Java List

Iterator of the JDK 1.4. implementation. Next steps would be:

· analyze gathered data for mentioned case studies

· build a Test Case Generation Tool that uses the information of the

enabledness model for guiding the generation of unit test

So far, the experimental results have provided good evidence that for guiding

the design of tests, the coverage of transitions of the enabledness model

criterion would be very effective for achieving a high percentage of code

coverage and for detecting faults of non-trivial protocol software.

Contractor

API Contract

Specification
API

Randoopμ-Java

Enabledness

Model

AspectJ

API Mutants Junit Tests

Instrumented

API Mutants

JUnit

Behavioral

Differences Log

What’s been done:

We’ve been working on the enabledness model of the following Java APIs

· ResultSet interface: we’ve used the HyperSQL database implementation

· Java Email Sever: an SMTP server

· Java Digital Signature: from the standard JDK 1.4 implementation

At test suite level, we’ve found that the number of covered transitions is

highly correlated with both, the capability of finding bugs and the code

coverage achieved. In contrast, the correlation given by covered states was

low, which suggests that it is not a promising criterion. We report the

Spearman’ correlation rank for each of the case studies for the transition

coverage criteria:

coefficient JDBC SMTP server Signature

bug finding 0.77 0.73 0.36

code coverage 0.78 0.48 0.35

	poster.vsd
	Página-1

