Hybrid Mapping for Autonomous Mobile Robot Exploration

Matías Nitsche, Pablo De Cristóforis

{mnitsche,pdecris}@dc.uba.ar

Miroslav Kulich, Karel Kosnar

{kulich,kosnar}@labe.felk.cvut.cz

Laboratorio de Robótica y Sistemas Embebidos, Departamento de Computación Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Intelligent and Mobile Robotics Group, Department of Cybernetics Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract - Hybrid maps combining several approaches to store robot's interpretation about its working environments are getting popular nowadays. This work deals with a novel approach to hybrid maps that is based on fixed-size interconnected occupancy grids organized in a topological graph. The presented mapping approach is employed in the exploration scenario, where the map is built from scratch and used for both local and global path-planning, and goal selection. Feasibility of the approach has been validated by a set of experiments in the Player/Stage system.

Introduction

In order to provide autonomous behaviour, robots build their own representation about the operating environment, i.e. a map. Generally, two types of maps are used:

Metric:

- accurate geometric description
- $\sqrt{\text{ suitable for path-planning}}$
- × very costly in large environments

Topological:

- $\sqrt{}$ describes topological relations between observed features
- × not suitable for precise localisation

Combining both, we used a hybrid map:

Hybrid: local fixed-size occupancy grids + global graph

- scalable in large environments
- $\sqrt{}$ supports unstructured environments (grid \neq room)
- cheap path-finding

Gateway Detection

Metric and topological aspect:

Map Structure

Metric: series of fixed-size occupancy grids

• gateway: set of contiguous free cells of each border of a grid

Topological: graph with two node-types:

- area nodes: distinct topological areas of a given grid
- gateway nodes: topological view of metric gateways

References

- [1] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors, Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.
- [2] A. Elfes. Occupancy Grids: A stochastic spatial representation for active robot perception. In Proc. of the Sixth Conf. on Uncertainty in AI, 2929 Campus Drive, San Mateo, CA 94403, 1990. Morgan Kaufmann Publishers, Inc.
- [3] Sebastian Thrun, Jens-Steffen Gutmann, Dieter Fox, Wolfram Burgard, and Benjamin J. Kuipers. Integrating topological and metroc maps for mobile robot navigation: a statistical approach. In Proc. of the Fifteenth National/Tenth Conf. on Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI '98/IAAI '98, pages 989–995, Menlo Park, CA, USA, 1998. American Association for Artificial Intelligence.
- [4] B. Yamauchi. A frontier-based approach for autonomous exploration. In *Proc. of* IEEE Int. Symposium on Computational Intelligence in Robotics and Automation. 'Towards New Computational Principles for Robotics and Automation', pages 146-151. IEEE Comput. Soc. Press, 1997.
- [5] Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The Player/Stage project: Tools for multi-robot and distributed sensor systems. In Proc. of the 11th Int. Conf. on Advanced Robotics, pages 317-323, 2003.
- [6] G. Michael Youngblood, Lawrence B. Holder, and Diane J. Cook. A framework for autonomous mobile robot exploration and map learning through the use of place-centric occupancy grids. In ICML Workshop on Machine Learning of Spatial Knowledge, 2000.
- [7] I. Ulrich and J. Borenstein. VFH+: Reliable obstacle avoidance for fast mobile robots. IEEE Int. Conf. on Robotics and Automation, pages 1572-1577, 1998.

Exploration Method

Local level: path-finding over a local grid

Global level: path-finding over the global graph To follow the global path \rightarrow local paths are computed along the way

Path-finding algorithm: Dijkstra's shortest path

- 1. For each edge of a grid, the lists of contiguous free cells are constructed
- 2. Free cell:
 - occupancy probability ≤ treshold
 - require this condition to neighbouring cells perpendicular to the edge, up to a certain distance
 - Avoids attempting to traverse a grid when a wall lays on the adjacent grid (invisible to local path-planning)
- 3. Each metric gateway is associated with a gateway node in the graph

Map Update

Metric Map

- Probabilistic model of sensor data. Information is applied to current grid with a Bayesian Filter
- Update is first performed over a large robotcentered grid and is then applied to the overlapping grids of the map

Topological Map:

- 1. Local path-finding performed between robot position and each gateway node If path is found, nodes are connected (otherwise, they're disconnected)
- 2. Topological area equivalence is determined
 - Robot always has a notion of current area node
 - Upon entering a grid, this node is connected to the gateway node used for entrance
 - For each gateway in the grid, pathfinding is performed
 - If the GW node is not associated with an area node, it is connected
 - Otherwise, the current node and the other node are merged

Experiments

Method was implemented in C++ as a client program for the Player/Stage environment (version 3.0). Simulation conditions:

Robot: Pioneer 2DX (w/SICK LMS200 laser sensor -180 FOV)

Environment: Several structured and non-structured envinroments were tested, 25×20 meters

Results for a structured office-like area are presented here

Conclusion

- The results show the feasiblity of the approach.
- In contrast to full global metric map:
 - scalability in terms of memory usage
 - supports non-structured environments
 - minimizes path-finding cost without losing accuracy
- In contrast to one grid per-room: Unstructured (no rooms) or open areas (big rooms) are not a problem with fixed-size grids