
Robot Control by Component-Oriented
Interoperation of Real-Time DEVS Engines

1. Dept. of Systems and Computer Engineering, Carleton University, Canada.
2. CIFASIS-CONICET / Universidad Naciona de Rosario, Arngentina. 3. Computer Science Department, FCEN, UBA, Argentina.

4. Laboratorio de Sistemas Dinámicos FCEIA - UNR, Argentina.

Mohammad Moallemi1, Gabriel Wainer1

{moallemi, gwainer}@sce.carleton.ca

Federico Bergero2,4

bergero@cifasis-conicet.gov.ar

Rodrigo Castro3,4

rcastro@dc.uba.ar

Partitioned and Networked ModelE-puck Robot:
Obstacle Avoidance Model

Experimental Results Conclusions and References
> We introduced a generic lightweight interface for network I/O message transfers
between DEVS models running on different DEVS-based tools.
> Splitting a model into components deployable to distributed real-time tools can be
confined to an implementation layer, preserving all the original model specifications.
> The task of migrating subcomponents previously developed for ECD++ to
PowerDEVS can be synthesized into a repeatable procedure.
> Messages across simulators do not bear time references into their semantics,
leaving the synchronization responsibility to the modeling level.

We conducted various experiments implementing the example model
presented.

The figure below shows the input and output log files of ECD++
simulator. The input log file records all the real-time incoming data
(from the environment) to the model’s input ports while the output file
saves all the outputs of a DEVS model (with microseconds precision).
The inputs and associated outputs are marked with red boxes in the
figure. In the first box of the input file, two series of the IR sensor values
inputted at time zero and after 50 milliseconds are shown (the IR
sensor inputs are received every 50 milliseconds.)

The first box of the output file shows the output to the OutIR port, which
triggers the output driver associated to this port to send the array of
inputs containing the values of the eight IR sensors. Therefore, when all
of the IR values are received, they are forwarded to the Controller.
Box 2 of the input file shows an input signal received from InMotor port
containing value “1”, which is interpreted in box 2 of the output file with
the accompanying LED commands (added by the Driver).

Abstract
Model reuse and interoperability are cost and effort saving

solutions for the simulation-driven development of embedded
real-time systems. Different embedded systems share the same
components (e.g. motors, sensors, actuators, controllers, etc),

and remodeling them is costly in terms of time and effort.
Instead, by combining different existing models, developers can

improve productivity. We present a new generic lightweight
interface for message transfers between DEVS models running

on different DEVS-based tools. This allows the definition of
component-based models to be deployed on different tools

collaborating in real-time. The components work autonomously.

DEVS Modeling and Simulation
DEVS[6] is a general, system theoretic-based formal framework and
mathematical language:
> Description of General Discrete Event Systems
> Well-defined coupling of components Hierarchical, modular construction
> Fosters models repository and models reuse
> Supports accurate approximation of Continuous Systems, Hybrid Systems
and Generalized Stochastic Systems.

A DEVS atomic component is formally defined by:

AM = < X, S, Y, δext, δint, λ, ta >, where:

X: a set of external input event types
S: a sequential state set

Y: an output set
δext: Q × X → S, an external transition function

where Q is the total state set of M = {(s,e) | s in S and 0 ≤ e ≤ ta(s)}
δint: S → S, an internal transition function

λ: S → Y , an output functionta: S → R+0,∞, a time advance function

Real-Time DEVS Engines:
ECD++ and PowerDEVS

PowerDEVS [2] is a general purpose software tool for DEVS
modeling and simulation oriented to the simulation of hybrid
systems. It allows defining atomic DEVS models in C++
language that can be then graphically coupled in hierarchical
block diagrams to create more complex systems.
The environment automatically translates the graphically
coupled models into a C++ code which executes the real-
time simulation.

ECD++ [1,5,8] (Embedded CD++) is an engine that can
execute DEVS models in embedded environments. It
features a Flat Coordinator and a GGAD Graphical Modeling
tool, supporting the Parallel DEVS formalism. Its real-time
extensions allow users to develop Hardware-In-the-Loop
applications with ease, being able to integrate them in
DEVS-based environments.

The movitvation of this work is to introduce a
collaboration technique between discrete and
continuous M&S-based systems under DEVS
specifications, in our case, PowerDEVS and
ECD++ [4,7]. Our goal is to benefit from the formal and
hierarchical features of DEVS to integrate the discrete
models in ECD++ with continuous and hybrid ones in
PowerDEVS[3].

Collaborative Real-Time Simulation

While the simulation engines are running in real-time, different models can join this distributed network
of running models and feed from the outputs of other models while contributing their own outputs to the
other models in the network.

The network interface for each DEVS port can be implemented in a different way (even using different
network protocols), thanks to the abstract global message structure for transfer of the DEVS outputs.

This is a lightweight, decoupled, physically-based method to provide a unified notion of time advance across
simulators. Thus, the component-oriented aspect of DEVS allows different coupled components of a
DEVS-based system to operate autonomously following a common physical notion of time advance.

The e-puck logical controller is divided into two
parts: the Controller and the Driver.
> The Controller is the main decision making
unit, where the commands to avoid obstacles
are generated.
> The Driver model works as a client who
forwards the inputs from robot to the Controller
and the outputs from Controller to the robot.
The interface to the robot is part of the Driver
model.

[1] YU, J.; WAINER, G. “ECD++: a tool for modeling embedded applications”.
[2] F. Bergero & E. Kofman. “PowerDEVS: A Tool for Hybrid System Modeling and Real-time simulation"
[3] Francois Cellier and Ernesto Kofman “Continuous System Simulation” Springer, New York, 2006.
[4] Moallemi, M..; Wainer, G. "Designing an Interface for Real-Time and Embedded DEVS"
[5] G. Wainer, et. al “A Model-Driven Technique for Development of Embedded Systems Based on the DEVS Formalism”.
[6] B. Zeigler, T. Kim, H. Praehofer. “Theory of Modeling and Simulation”. Academic Press 2000.
[7] Moallemi, M..; Wainer, G. "Designing an Interface for Real-Time and Embedded DEVS"
[8] Wainer, G. "CD++: a toolkit to define discrete-event models".
[9] E-puck robot website available at: http://www.e-puck.org/.

The Controller model is implemented on PowerDEVS and the Driver on ECD++. We use UDP network
protocol for message transfer over an Ethernet network. We have chosen UDP over TCP for its simplicity,
and since the experiments were done on a local network, the chances of loosing a UDP datagram were
negligible. The messages carry no time reference and clock syncronization is not implemented. Time
synchronization is implemented with the underlting operating system primitives.

The payload of the UDP message contains an integer indicating to which port the message should go and a
fixed-size buffer were sender and receiver have to agree on a format.

E-puck [9] is a mobile robot equipped with sensors and motors. It is
composed of eight infrared distance proximity sensors (IR), eight
LEDs mounted on the top of the robot, and two motors.

The controller model is designed with DEVS to steer the robot in a
field while avoiding obstacles.

Based on the inputs received from the sensors, the controller takes
the following different decisions: move forward, turn 45 degrees left,
turn 45 degrees right, turn 90 degrees left, turn 90 degrees right, turn
180. The on the right shows a GGAD state machine model that
implements the logical control of the e-puck taking decisions from
what it receives from its IR sensors. This GGAD model can easily
converted to a DEVS model and implemented in any DEVS
simulator.

e-puck

Forward Direction

LED0

LE
D

1

LED2

LE
D3

LED4

LED5

LED6

LE
D

7

IR0

IR1

IR
2

IR
3

IR4

IR
5

IR7

IR
6

PowerDEVS ECD++ Robot

e-puck
Controller

IR

Motor

e-puck
Driver

IR

Motor

Leds

Network

Network
Proximity
sensors

LEDs

Motors

PowerDEVS (controlller) ECD++ (epuck robot)

Move forward

Front is blocked

Turn 180

Move forward

t=0.88sec

M
oving forw

ard...
T

urning...

t=2.45 sec

t=2.53 sec

t=4.55 sec

M
oving forw

ard...

